Differentiation of neonatal dorsal root ganglion-derived neural stem cells into oligodendrocytes after intrathecal transplantation into a cauda equina lesion model.

نویسندگان

  • Z Y Fu
  • J G Shi
  • N Liu
  • L S Jia
  • W Yuan
  • Y Wang
چکیده

Cauda equina syndrome (CES) is characterized by varying patterns of low back pain, sciatica, lower extremity sensorimotor loss, and bowel and bladder dysfunction. The prognosis for complete recovery of CES is dependent on not only the time before surgical intervention with decompression but also the severity of the nerve damage. Delayed or severe nerve compression impairs the capability of nerve regeneration. Transplantation of neural stem cells (NSCs) may facilitate axon regeneration and functional recovery in a spectrum of neurological disorders. Our study shows that the NSCs derived from early postnatal dorsal root ganglion (DRG) are able to proliferate to form neurospheres and differentiate into O4(+) oligodendrocytes but not glial fibrillary acidic protein (GFAP(+)) astrocytes or βIII-tubulin(+) neurons in vitro. After intrathecal transplantation into the lumbar spinal canal stenosis animal model, most of the GFP-expressing NSCs were induced to differentiate into oligodendrocytes in vivo. Although the recovery of sensorimotor function was not significantly improved in rats with transplantation therapy, our results implied that subarachnoid microinjection of NSCs may promote axon regeneration of DRG neurons in the cauda equina model after nerve injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain-derived neurotrophic factor is up-regulated in severe acute cauda equina syndrome dog model.

To determine the level of brain-derived neurotrophic factor (BDNF) in experimental dog model of severe acute cauda equina syndrome, which was induced by multiple cauda equina constrictions throughout the entire lumbar (L), sacral (S) and coccygeal (Co) spinal cord and their central processes of the dorsal root ganglia neurons. Adult male mongrel dogs were randomly divided into 2 groups. The exp...

متن کامل

Intrathecal transplantation of neural stem cells appears to alleviate neuropathic pain in rats through release of GDNF.

The beneficial effect of stem cells on several animal models of neuropathic pain has been recognized recently. However, there have been no studies on the effects of neural stem cell transplantation on neuropathic pain. In the present study, using the rat model of chronic constriction injury of the sciatic nerve, we observed the effect of intrathecal transplantation of extrinsic neural stem cell...

متن کامل

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

Delivery of Epidermal Neural Crest Stem Cells (EPI-NCSC) to hippocamp in Alzheimer\'s Disease Rat Model

Background: Alzheimer’s disease (AD) is characterized by progressive neuronal loss in hippocamp. Epidermal neural crest stem cells (EPI-NCSC) can differentiate into neurons, astrocytes and oligodendrocytes. The purpose of this study was to evaluate the effects of transplanting EPI-NCSC into AD rat model. Methods: Two weeks after induction of AD by injection of Amyloid-β 1-40 into CA1 area of ra...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 12 4  شماره 

صفحات  -

تاریخ انتشار 2013